See 1.6 Notes: Complex numbers a + bireal # imaginary # Reminders:

a.
$$\sqrt{-1} = i \rightarrow \text{therefore } i^2 = -1$$

b. $\sqrt{-9} = \sqrt{9} \cdot \sqrt{-1} = 3i$
c. $(3i)^2 = 3^2 \cdot i^2 = 9(-1) = -9$

d. $(3+i)^2 = (3+i)(3+i)$

 $= 9 + 6i + i^2$

= 9 + 6*i* + <mark>-1</mark>

= 8 + 6i

Reminder from ch.5 notes:

Principal values determine specific solutions rather than an infinite number of solutions.

 $\cos x \ge 0^{\circ} \le x \le 180^{\circ}$ Quadrants I,II

TODAY! Notes 8.1 Polar Coordinates <u>*Polar Coordinates*</u>: used to record the position of an object using a fixed point and an angle made with a fixed ray.

Pole: the fixed point "O" at the origin

Polar Axis: the horizontal ray directed toward the right from the pole.

($\mathbf{r}, \boldsymbol{\theta}$): the polar coordinates that locate point P

r = distance from point O to point P θ = angle between polar axis and the ray \overrightarrow{OP}

NOTE: if r < 0, locate the terminal side, then move in the <u>opposite</u> direction (move away from given angle) **Conversion from Polar Coordinates to Rectangular Coordinates** $(r,\theta) \rightarrow (x,y)$ polar rectangular $x = r \cos \theta, \quad y = r \sin \theta$

Conversion from Rectangular Coordinates to Polar Coordinates $(x, y) \rightarrow (r, \theta)$ rectangular polar

$$r = \sqrt{x^2 + y^2}$$
 or $r^2 = x^2 + y^2$

 $\tan \theta = \frac{y}{x} \quad (x \neq 0)$

WARM-UP ON TODAY'S RESOURCE PAGE:

Unless stated otherwise, the default is to use r > 0 and $0 \le \theta < 2\pi$ (both positive values!)

PLEASE FOLLOW THE INSTRUCTIONS ON TODAY'S RESOURCE PAGE:

8.1 #5-10, 12,14

#5-8 graph, label coordinates next to each point

#9-10 graph, label coordinates next to each point

SOME OF THE BOOK INSTRUCTIONS HAVE BEEN SLIGHTLY MODIFIED:

#12 plot point, label given coordinates, then list <u>three</u> other possible coordinates for the same point where $-2\pi \le \theta \le 2\pi$

#14 plot point, label given coordinates, then list <u>three</u> other possible coordinates for the same point where $-2\pi \le \theta \le 2\pi$

PLEASE FOLLOW THE INSTRUCTIONS AND ALSO COMPLETE THE REVIEW PROBLEMS:

8.1 #17-22: write given coordinates, then identify point

8.1 #25-28 show all steps on a separate sheet of paper!

reminder: $x = r\cos\theta$, $y = r\sin\theta$, $r^2 = x^2 + y^2$, $\tan\theta = \frac{y}{x}$

no calculator, refer to unit circle to solve

CHECK EVEN BOOK ANSWERS:
(#12,14,18,20,22,26,28)

$$\left(2,\frac{2\pi}{3}\right)\left(-2,\frac{5\pi}{3}\right)\left(3,\frac{3\pi}{2}\right)\left(-\sqrt{3},1\right)$$

 $\left(2,-\frac{4\pi}{3}\right)\left(2,-\frac{5\pi}{4}\right)\left(-2,-\frac{\pi}{4}\right)\left(-2,\frac{7\pi}{4}\right)$
P Q R

Review of Unit Circle and Complex Numbers (see notes 1.6)

- 1. Complex numbers (show work on a separate sheet of paper!)
 - A. (2-3i)(7-4i) B. $(1+4i)^2$

E.

C. (2-3i) + (7-4i) D. (2-3i) - (7-4i)

$$\frac{2+i}{1+2i}$$
 (hint: use conjugate) F. $\frac{3-2i}{-4-i}$ (hint: use conjugate)

CHECK ANSWERS#1, 3-5					
ΙI	II	IV	$\sqrt{3}$	_	$\sqrt{3}$
			3		2
<u>y</u>	\underline{x}	<u> </u>	1	Х	у
x	у	x	у		
1	π	π	7:	π	$\sqrt{3}$
$\frac{1}{2}$	2	4	4	-	VS
-15 +	8i	-5 +	i _	$\frac{10}{17}$	$+\frac{11}{17}i$
$\frac{4}{5}$ -	$\frac{3}{5}i$	2 - 2	29i		- 7i

ALSO COMPLETE THE REVIEW PROBLEMS:

2. Label all radian values AND coordinates of each given terminal point. (You will need to have this information memorized again for the ch.8 test!)

- 3. Define each function in terms of x and y (based on the unit circle with r = 1.) $\sin \theta = \cos \theta = \cos \theta = \sec \theta = \tan \theta = \cot \theta =$
- 4. Principal Values (see notes from chapter 5.)

To find a *unique* solution for Sin0 and Tan0, refer only to Quadrant _____ or ____.

To find a *unique* solution for Cosθ, refer only to Quadrant _____ or ____.

5. Evaluate using the unit circle. Use principal values when finding the inverse, $0 \le \theta < 2\pi$. <u>No calculator!</u> A. Arcsin $\left(-\frac{\sqrt{2}}{2}\right)$ B. Arctan(1) C. Cos⁻¹0 D. sin $\left(\frac{13\pi}{6}\right)$ hint: rewrite as Sin $\theta = -\frac{\sqrt{2}}{2}$

E.
$$\cot\left(-\frac{5\pi}{3}\right)$$

F. $\sin[\operatorname{Arctan}(-\sqrt{3})]$
Show all steps
for F and G
G. $\cot(\operatorname{Cos}^{-1}(-1) + \operatorname{Sin}^{-1}\frac{1}{2})$

ALSO COMPLETE THE REVIEW PROBLEMS:

3. Define each function in terms of x and y (based on the unit circle with r = 1.)

 $\sin \theta = \cos \theta = \cos \theta = \sec \theta = \tan \theta = \cot \theta =$

4. Principal Values (see notes from chapter 5.)

To find a *unique* solution for Sin0 and Tan0, refer only to Quadrant _____ or ____.

To find a *unique* solution for Cosθ, refer only to Quadrant _____ or ____.

5. Evaluate using the unit circle. Use principal values when finding the inverse, $0 \le \theta \le 2\pi$. No calculator!

A. $\operatorname{Arcsin}\left(-\frac{\sqrt{2}}{2}\right)$ B. $\operatorname{Arctan}(1)$ C. $\operatorname{Cos}^{-1}0$ D. $\operatorname{sin}\left(\frac{13\pi}{6}\right)$ hint: rewrite as $\operatorname{Sin}\theta = -\frac{\sqrt{2}}{2}$ E. $\operatorname{cot}\left(-\frac{5\pi}{3}\right)$ F. $\operatorname{sin}[\operatorname{Arctan}(-\sqrt{3})]$ G. $\operatorname{cot}(\operatorname{Cos}^{-1}(-1) + \operatorname{Sin}^{-1}\frac{1}{2})$ Show all steps for F and G