See 1.6 Notes: Complex numbers

$a+b i$

Reminders:

real \# imaginary \#
a. $\sqrt{-1}=i \rightarrow$ therefore $i^{2}=-1$
b. $\sqrt{-9}=\sqrt{9} \cdot \sqrt{-1}=3 i$
C. $(3 i)^{2}=3^{2} \cdot i^{2}=9(-1)=-9$

$$
\text { d. }(3+i)^{2}=(3+i)(3+i)
$$

$$
=9+6 i+i^{2}
$$

$$
=9+6 i+-1
$$

$$
=8+6 i
$$

e. Simplify using the conjugate:

$$
\begin{aligned}
& =\frac{i(2-4 i)}{(2+4 i)}(2-4 i) \\
& =\frac{2 i-4 i^{2}}{4-16 i^{2}} \\
& =\frac{2 i+4}{4+16}=\frac{4+2 i}{20}=\frac{1}{5}+\frac{1}{10} i
\end{aligned}
$$

Reminder: $i^{2}=-1$

Reminder from ch. 5 notes:

Principal values determine specific solutions rather than an infinite number of solutions.
$\left.\begin{array}{l}\sin x \\ \tan x\end{array}\right]_{-90^{\circ} \leq x \leq 90^{\circ}}^{\frac{-\pi}{2}} \quad$ Quadrants I,IV
$\cos x\} 0_{0}^{\circ} \leq x \leq 180^{\circ} \quad$ Quadrants $I, I I$

$$
\left(\frac{-\sqrt{3}}{2}, \frac{1}{2}\right)\left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right)
$$

TODAY! Notes 8.1 Polar Coordinates

Polar Coordinates: used to record the position of an object using a fixed point and an angle made with a fixed ray.

Pole: the fixed point "O" at the origin

Polar Axis: the horizontal ray directed toward the right from the pole.

Notes 8.1 continued...

(\mathbf{r}, θ) : the polar coordinates that locate point P
$r=$ distance from point O to point P
$\theta=$ angle between polar axis and the ray $\overrightarrow{O P}$
 then move in the opposite direction
(move away from given angle)

Conversion from Polar Coordinates

 to Rectangular Coordinates $(r, \theta) \rightarrow(x, y)$ $x=r \cos \theta, \quad y=r \sin \theta$ polar rectangularConversion from Rectangular Coordinates to Polar Coordinates $(x, y) \rightarrow(r, \theta)$ rectangular polar
$r=\sqrt{x^{2}+y^{2}} \quad$ or $\quad r^{2}=x^{2}+y^{2}$
$\tan \theta=\frac{y}{x} \quad(x \neq 0)$

WARM-UP ON TODAY'S RESOURCE PAGE:

Ch. 8 Honors Trig/Precalc

NAME:
PER:
8.1 \#5-10, 12,14, 17-22, 25-28 AND unit circle, complex numbers\#1-5
Warm-up: $\quad \mathrm{M}=(\quad, \quad)$

$$
A=(\quad, \quad)
$$

$$
\mathrm{T}=(\quad, \quad)
$$

$$
\mathrm{H}=(\quad, \quad)
$$

$\underset{\substack{\mathrm{F} \text { is similar to } \\ \# 12 \text { and } \# 14}}{ } \rightarrow \mathrm{~F}=(, \quad, \quad($,

$$
\left.\begin{array}{ll}
\mathrm{U}=(, &) \\
\mathrm{N}=(& ,
\end{array}\right)
$$

$$
\begin{aligned}
& \mathrm{M}=\left(3,60^{\circ}\right) \\
& \mathrm{A}=\left(4, \frac{-5 \pi}{6}\right) \\
& \mathrm{T}=\left(-2, \frac{5 \pi}{3}\right) \\
& \mathrm{H}=\left(-5, \frac{-\pi}{6}\right)
\end{aligned}
$$

Plot the points given above, then name the points listed below.

$$
\mathrm{F}=(\quad, \quad)
$$

Name F four different ways!

$$
\begin{array}{lll}
\mathrm{U}=(& , &) \\
\mathrm{N}=(& , &)
\end{array}
$$

$\mathrm{M}=\left(3,60^{\circ}\right)$

$$
A=\left(4, \frac{-5 \pi}{6}\right)
$$

$$
\mathrm{T}=\left(-2, \frac{5 \pi}{3}\right)
$$

$$
H=\left(-5, \frac{-\pi}{6}\right)
$$

$$
\text { or } F=\left(3, \frac{-2 \pi}{3}\right) \text { or } F=\left(-3, \frac{\pi}{3}\right)
$$

$$
\mathrm{F}=\left(3, \frac{4 \pi}{3}\right)
$$

Name F four different ways!

$$
\begin{aligned}
& \mathrm{U}=\left(1, \frac{11 \pi}{6}\right) \\
& \mathrm{N}=\left(4, \frac{\pi}{6}\right)
\end{aligned}
$$

Unless stated otherwise, the default is to use $r>0$ and $0 \leq \theta<2 \pi$ (both positive values!)

PLEASE FOLLOW THE INSTRUCTIONS ON TODAY'S RESOURCE PAGE:

8.1 \#5-10, 12,14
\#5-8 graph, label coordinates next to each point

\#9-10 graph, label coordinates next to each point

SOME OF THE BOOK INSTRUCTIONS HAVE BEEN SLIGHTLY MODIFIED:

\#12 plot point, label given coordinates, then list three other possible coordinates for the same point where $-2 \pi \leq \theta \leq 2 \pi$

\#14 plot point, label given coordinates, then list three other possible coordinates for the same point where $-2 \pi \leq \theta \leq 2 \pi$

PLEASE FOLLOW THE INSTRUCTIONS AND ALSO COMPLETE THE REVIEW PROBLEMS:

8.1 \#17-22: write given coordinates, then identify point
8.1 \#25-28 show all steps on a separate sheet of paper!

$$
\begin{aligned}
& \text { CHECK EVEN BOOK ANSWERS: } \\
& \text { (\#12,14,18,20,22,26,28) } \\
& \left(2, \frac{2 \pi}{3}\right)\left(-2, \frac{5 \pi}{3}\right) \quad\left(3, \frac{3 \pi}{2}\right)(-\sqrt{3}, 1) \\
& \left(2,-\frac{4 \pi}{3}\right)\left(2,-\frac{5 \pi}{4}\right)\left(-2,-\frac{\pi}{4}\right)\left(-2, \frac{7 \pi}{4}\right) \\
& \mathbf{P} \mathbf{Q} \quad \mathbf{R}
\end{aligned}
$$

reminder: $\mathrm{x}=\mathrm{r} \cos \theta, \quad \mathrm{y}=\mathrm{r} \sin \theta, \quad \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}, \quad \tan \theta=\frac{\boldsymbol{y}}{\boldsymbol{x}}$
no calculator, refer to unit circle to solve

Review of Unit Circle and Complex Numbers (see notes 1.6)

1. Complex numbers (show work on a separate sheet of paper!)
A. $(2-3 \mathrm{i})(7-4 \mathrm{i})$
B. $(1+4 \mathrm{i})^{2}$
C. $(2-3 i)+(7-4 i)$
D. $(2-3 i)-(7-4 i)$
E. $\frac{2+i}{1+2 i}$ (hint: use conjugate)
F. $\frac{3-2 i}{-4-i}$ (hint: use conjugate)

$$
\begin{array}{cccccc}
\hline \mathrm{I} & \mathrm{I} & \text { II } & \text { IV } & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{2} \\
\frac{\boldsymbol{y}}{\boldsymbol{x}} & \frac{\boldsymbol{x}}{\boldsymbol{y}} & \frac{1}{\boldsymbol{x}} & \frac{1}{\boldsymbol{y}} & \mathrm{x} & \mathrm{y} \\
\frac{1}{2} & \frac{\boldsymbol{\pi}}{2} & \frac{\pi}{4} & \frac{7 \pi}{4} & \sqrt{3} \\
-15+8 \mathrm{i} & -5+\mathrm{i} & -\frac{10}{17}+\frac{11}{17} i \\
\frac{4}{5}-\frac{3}{5} i & 2-29 \mathrm{i} & 9-7 \mathrm{i}
\end{array}
$$

ALSO COMPLETE THE REVIEW PROBLEMS:

2. Label all radian values AND coordinates of each given terminal point.
(You will need to have this information memorized again for the ch. 8 test!)

3. Define each function in terms of x and y (based on the unit circle with $r=1$.)
$\sin \theta=$
$\csc \theta=$
$\cos \theta=$
$\sec \theta=$
$\tan \theta=$
$\cot \theta=$
4. Principal Values (see notes from chapter 5.)

To find a unique solution for $\operatorname{Sin} \theta$ and $\operatorname{Tan} \theta$, refer only to Quadrant \qquad or \qquad _.

To find a unique solution for $\operatorname{Cos} \theta$, refer only to Quadrant \qquad or \qquad .
5. Evaluate using the unit circle. Use principal values when finding the inverse, $0 \leq \theta<2 \pi$. No calculator!
A. $\operatorname{Arcsin}\left(-\frac{\sqrt{2}}{2}\right)$
B. $\operatorname{Arctan}(1)$
C. $\operatorname{Cos}^{-1} 0$
D. $\sin \left(\frac{13 \pi}{6}\right)$
hint: rewrite as $\sin \theta=-\frac{\sqrt{2}}{2}$
E. $\cot \left(-\frac{5 \pi}{3}\right)$
F. $\sin [\operatorname{Arctan}(-\sqrt{3})]$

Show all steps
G. $\cot \left(\operatorname{Cos}^{-1}(-1)+\operatorname{Sin}^{-1} \frac{1}{2}\right)$

ALSO COMPLETE THE REVIEW PROBLEMS:

3. Define each function in terms of x and y (based on the unit circle with $r=1$.)
$\sin \theta=$
$\csc \theta=$
$\cos \theta=$
$\sec \theta=$
$\tan \theta=$
$\cot \theta=$
4. Principal Values (see notes from chapter 5.)

To find a unique solution for $\operatorname{Sin} \theta$ and $\operatorname{Tan} \theta$, refer only to Quadrant \qquad or \qquad .

To find a unique solution for $\operatorname{Cos} \theta$, refer only to Quadrant \qquad or \qquad .
5. Evaluate using the unit circle. Use principal values when finding the inverse, $0 \leq \theta<2 \pi$. No calculator!
A. $\operatorname{Arcsin}\left(-\frac{\sqrt{2}}{2}\right)$
B. $\operatorname{Arctan}(1)$
C. $\operatorname{Cos}^{-1} 0$
D. $\sin \left(\frac{13 \pi}{6}\right)$
hint: rewrite as $\sin \theta=-\frac{\sqrt{2}}{2}$
E. $\cot \left(-\frac{5 \pi}{3}\right)$
F. $\sin [\operatorname{Arctan}(-\sqrt{3})]$
Show all steps $\mathrm{G} . \cot \left(\operatorname{Cos}^{-1}(-1)+\operatorname{Sin}^{-1} \frac{1}{2}\right)$ for F and G

